Joint prediction of observations and states in time-series based on belief functions

نویسندگان

  • Emmanuel Ramasso
  • Michèle Rombaut
  • Noureddine Zerhouni
چکیده

Forecasting the future states of a complex system is a complicated challenge that is encountered in many industrial applications covered in the community of Prognostics and Health Management (PHM). Practically, states can be either continuous or discrete: Continuous states generally represent the value of a signal while discrete states generally depict functioning modes reflecting the current degradation. For each case, specific techniques exist. In this paper, we propose an approach based on case-based reasoning that jointly estimates the future values of the continuous signal and the future discrete modes. The main characteristics of the proposed approach are the following: 1) It relies on the K-nearest neighbours algorithm based on belief functions theory; 2) Belief functions allow the user to represent his partial knowledge concerning the possible states in the training dataset, in particular concerning transitions between functioning modes which are imprecisely known; 3) Two distinct strategies are proposed for states prediction and the fusion of both strategies is also considered. Two real datasets were used in order to assess the performance in estimating future break-down of a real system.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Joint prediction of observations and states in time-series: a partially supervised prognostics approach based on belief functions and KNN

Forecasting the future states of a complex system is a complicated challenge that is encountered in many industrial applications covered in the community of Prognostics and Health Management (PHM). Practically, states can be either continuous or discrete: Continuous states generally represent the value of a signal while discrete states generally depict functioning modes reflecting the current d...

متن کامل

Tidal prediction using time series analysis of Buoy observations

Although tidal observations which are extracted from coastal tide gages, have higher accuracy due to their higher sampling rate, installing these types of gages can impose some spatial limitation since we cannot use every part of sea to install them. To solve this limitation, we can employ satellite altimetry observations. However, satellite altimetry observations have lower sampling rate. Acco...

متن کامل

کاربرد CCA به منظور ارزیابی و مقایسه توانایی SOI و SST Nino’s در پیش‌بینی بارش زمستانه سواحل دریای خزر

In Iran, about 75% of national rice production is supplied in Gilan and Mazandaran proviences which have the highest amount of precipitation. Seasonal prediction of rainfall induces significant improvement on yield production and on preventing climate hazardz over these feritle areas. Canonical correlation analysis (CCA) model was carried out evaluates the possibility of the prediction of win...

متن کامل

کاربرد CCA به منظور ارزیابی و مقایسه توانایی SOI و SST Nino’s در پیش‌بینی بارش زمستانه سواحل دریای خزر

In Iran, about 75% of national rice production is supplied in Gilan and Mazandaran proviences which have the highest amount of precipitation. Seasonal prediction of rainfall induces significant improvement on yield production and on preventing climate hazardz over these feritle areas. Canonical correlation analysis (CCA) model was carried out evaluates the possibility of the prediction of win...

متن کامل

Risk prediction based on a time series case study: Tazareh coal mine

In this work, the time series modeling was used to predict the Tazareh coal mine risks. For this purpose, initially, a monthly analysis of the risk constituents including frequency index and incidence severity index was performed. Next, a monthly time series diagram related to each one of these indices was for a nine year period of time from 2005 to 2013. After extrusion of the trend, seasonali...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017